
A Rodin Plugin for the Tinker Tool
By Yibo Liang

Ver. 01

Table of Content
Introduction ... 3

Definition ... 3

High Level Overview .. 4

Components .. 4

Rodin Side .. 4

The Tinker plugin ... 4

The Preference Plugin ... 5

The controller .. 5

Tinker Side ... 5

Socket Wrapper ... 6

JSON Wrapper ... 6

Protocol Wrapper .. 6

Compiling Tinker .. 6

Protocol ... 6

Overview .. 6

Detail ... 8

Conclusion & Future work ... 9

Future works .. 9

Installation Guidelines ... 10

Download .. 10

Installation ... 10

User Guide ... 11

Introduction
Tinker is a tool that implements the proof-strategy graph (PSGraph) formalism. Here, tactics

are represented as nodes and are linked with each other with edges. Each tactic will

consume goals on input edges and generate new sub-goals which are sent to the output

edges. The Tinker tool is generic w.r.t. theorem provers, and supports Isabelle and

ProofPower.

This plugin aim to provide Rodin Prover users with the functionality of Tinker. It integrates

TinkerGUI, Tinker core and Rodin platform to provide PSGraph feature for Rodin users. This

plugin is a software system including mainly 2 parts, a Rodin Plugin (Eclipse Plugin)

programmed in Java and an extension to Tinker in PolyML.

Definition
Atomic tactic: a tactic that only represent an atomic evaluation of a goal. Note that the

model of atomic tactics contains a "tactic" field which does not correspond to their name,

but to a complete description of their purpose.

On Hyp Tactic: Tactics that only applies on hypothesis in Rodin platform, such as deducing a

conjunction in a predicate of hypothesis.

On Goal Tactic: Tactics that only applies on goal in Rodin platform, such as case splitting a

disjunction in a predicate of goals.

Auto tactics: Automatic Tactics that are originally Rodin built in, such as newPP and Lasoo.

Mostly are a combination of different atomic tactics or other auto tactics with predefined

applying rules and order. The auto tactics include combinations of atomic tactics of which

type of outcomes are non-deterministic, since PSGraph is a typed proof model, user must be

very certain of their work before they use this type of tactics.

Proof Node: The node displayed in Proof Tree View in Rodin Platform. Each node represent

a goal that may need to be proved.

High Level Overview
The Tinker plugin is made of two main groups of components, a Rodin side Eclipse based

Plugins written in Java and a Tinker side interface written in PolyML.

As you can see from the figure, there are two plugins implemented on Rodin side. On Rodin

Platform, Tinker Plugin implements the proof tactic extension point that wraps the

controller for the plugin.

On the left side, the controller as an implementation of a tactic, warps all the program flow

in its inherited “apply” method. It has a process manager that launches, monitors and

terminates the Tinker Core and GUI process. A socket connector class is used to manage the

connection and communication between the Plugin and Tinker Core. Command Executor

class reads the JSON command from Tinker Core and makes corresponding changes to the

proof node.

Components

Rodin Side

The Tinker plugin
The Tinker Plugin for Rodin Platform is technically an Eclipse plugin, because Rodin Platform

is built on Eclipse platform. A plugin activator is needed for the platform to control the life

cycle of the plugin. Then there is a tactic provider class that extend a Rodin class named

DefaultTacticProvider which is used by Rodin tactic manager. Each tactic provider will add a

tactic button on the Proof Control View tool bar on Rodin Platform. The interfaces are

implemented in the following files in package tinker.core.plugin:

 PluginActivator.java: the activator class used by Eclipse platform to control the

plugin’s life cycle.

 TinkerDebugMode.java: the class that offers all current Tinker functionality by using

TinkerTactic.java.

Tinker GUI

Tinker Core

Rodin Interface

Socket wrapper

Prover Extension

Interface

JSON helper

Tinker Plugin

Controller Wrap Tactic

Process Manager

Socket Connector

Command Executor

Rodin Preference

plugin for Tinker

Rodin

Platform

Extension

Point

 TinkerAutoProveMode.java: the class designed to use Tinker as an auto tactic like

other auto tactics in Rodin. This is disabled in this version because the functionality

is not integrated with TinkerGUI.

The Preference Plugin
This is a separate plugin that add a preference page to Rodin Platform for Tinker plugin. It

includes 3 files in package tinker.core.preference:

 PreferenceConstants.java: a class that holds all string names of the preference

options.

 PreferenceInitializer.java: a class used by Eclipse Platform to initialise the preference

page.

 TinkerPreferencePage.java: the class that implements the view of the preference

page, such as adding textbox and buttons.

The controller
The controller includes 3 parts, they are:

Controller itself

with files in package tinker.core.protocol:

 TinkerTactic.Java: the class that implements ITactic class of Rodin platform. Unlike

other class implements ITactic class that are originally implemented in Rodin

Platform, Its “apply” method does not make any change to the proof node in Rodin

directly, nevertheless it is actually the wrapper of the controller of the plugin. The

modification to proof node tree is done by Command Executor.

 TinkerSession.java: the model class that holds protocol states of current session plus

the information needed for the connection to Tinker Core such as the PSGraph file

path.

 PluginStates.java: the static class that holds the constant representing plugin states.

 SocketStates.java: the static class that holds the constant representing Socket states.

 TacticStates.java: the static class that holds the constant representing Tinker Tactic

states, which are basically the controller states.

The states are used to by the controller to control the program flow and keep the

consistence of the communication between processes.

Process Manager with files:

 TinkerGUIProcess.java: the singleton class that handles the Tinker GUI process.

 TinkerProcess.java: the singleton class that handles the Tinker Core process.

Socket Connector with file:

 TinkerConnector.java: the socket wrapper class, which also reports current socket

state to the controller.

Tinker Side
On Tinker side of the plugin, the added files all together serves as the interface that handles

the communication between Tinker Core and Rodin. All files were developed in Isabelle 2014

platform and later were compiled independent of Isabelle.

Socket Wrapper

 interface/wsock.sig.ML

 build/rodin_socket_struct.ML

 build/rodin_text_socket.ML

The socket connection is built on top of the textsocket.ML file from Quantomatics. Above 3

files together wraps the textsocket.ML and offers convenience for further usage.

JSON Wrapper

 build/rodin_json_protocol.struct.ML

 interface/json_socket.sig.ML

The above 2 files helps to create and parse JSON string for socket communication.

Protocol Wrapper

 interface/tpp_protocol.sig.ML

 build/rodin_protocol.ML

These 2 files implements the tinker side protocol of communication.

Compiling Tinker
The Tinker Core for Rodin is compiled as an independent executable. The process of

compiling is complicated and will not be explained in detail in this manual. To develop an

automatic compiler for Tinker core with a user manual will be a part of future work.

Briefly speaking, because the Tinker Core was built in Isabelle, where many .ML files are

connected and referenced by Isabelle theory file .thy, these .thy files are all recursively

parsed and turned into .ML file in a bottom-up style using a small Java Compiler

implemented myself. Then the dependencies are manually solved by only keeping the

necessary file reference, because Tinker Core fore Rodin does not need the functionality

used by ProofPower or Isabelle, whereas Tinker Core depends on Quantomatics of which

only part functionality is used. Then the .ML files are optimised by deleting repetitive

reference. Finally the files are chained together and loaded into PolyML, and by using the

compiling functionality built-in PolyML the Core is compiled into an .o file. Then GCC is used

to turn the .o file into an executable.

Protocol

Overview
The following table shows the overview communication flow between Tinker Core and Rodin

Plugin from top to bottom:

Step Tinker GUI Tinker Core Rodin Plugin

1 User clicks “Tinker Tactic”
button, select PSGraph
file, lauches GUI and
Tinker Core.

 The Plugin blocks on
server socket waiting for
connection

2 Launches Launches, trying to
connect to Rodin as a
client.

3 Connection made.
Send PSGraph file path as
string
Blocks on waiting for
reply

4 Receives file path,
Blocks on trying connect
to GUI as client

5 User click “connect” on
GUI,
Start server socket

6 Connection made with
GUI
Sends information with
GUI
Blocks on waiting for GUI

7 GUI load PSGraph file
Waiting for user actions

8 User Action
Sends corresponding
information to Tinker
Core

9 Tinker Core send
instructions to Plugin in
JSON
Blocks on waiting for
Plugin

10 Plugin receives
instruction, performs
some operation,
Send back result,
Blocks on waiting for
reply

11 GUI exchange
information with core.
Perform visual change

According to result send
by Plugin
Exchanges information
with GUI
Send new instruction to
Plugin

 Step 10 and 11 are repeated until the user click stop on GUI.

12 On receiving stop from
GUI
Send “STOP” instruction
to Plugin

13 Receive “Stop”

Send “STOP_RECEIVED”
Blocks on waiting for
Disconnection

14 Receive
“STOP_RECEIVED”
Disconnect Socket with
Plugin

15 Disconnect Socket
Tactic completes

16 Remains Open Exit in 15 second if there
is no further connection
from Plugin

Detail
The following are the collection of instructions and replies that Tinker and Rodin send to

each other. The communication is simple:

ONE request from core is answered with ONE result, e.g. GET_HYPS <= GET_HYPS_RESULT

Conclusion & Future work
Rodin can currently work with tinker with easy setup. With independently compiled Tinker

version for Rodin, users only need one click to start using Tinker for Rodin proofs.

Future works
1. Need to solve exception handling problems for the connection between Tinker

Core and Rodin. Currently when an exception is caught and if this exception is a

socket connection exception, then the connection is assumed to be

disconnected by the Plugin and Tactic will end to avoid dead lock and lose of

work.

2. Need to integrate launch command with Tinker GUI, currently, user will need to

click on Rodin to start GUI and click “connect” on GUI in order for the plugin to

work. In future work, we aim to simplify this operation and user will only need

to click one button to use everything.

3. Solve the exception handling problem for Tinker Core. Tinker core uses a socket

implementation from Quantomatics. This implementation causes the thread to

block permanently if there are 60 or more exception thrown while trying to

connecting. This limits down the time we can retry to connect the Core to the

plugin and it is the reason why the tinker core process has to be shut down after

each session.

4. Solve the problem that users need to use tactic editor in GUI in order for Rodin

to work with PSGraph.

Installation Guidelines

Download
Please download Compiled Tinker Core at link:

Linux

http://ggrov.github.io/tinker/abz2016/release/TinkerCore.tar.gz

Windows

http://ggrov.github.io/tinker/abz2016/release/TinkerCore.7z

Please download TinkerGUI at link:

http://ggrov.github.io/tinker/abz2016/release/tinkerGUI.zip

Please download the plugin at link:

http://ggrov.github.io/tinker/abz2016/release/tinker.for.rodin.zip

Installation
1. Unzip Tinker Core and Tinker GUI to a folder

2. Extract tinker.for.rodin.zip and copy tinker.for.rodin.jar to plugins folder under Rodin

installation path.

3. Lauch Rodin, you should see a small T button in the toolbar in the Proof Control

View

4. Click top menu Window -> Preference -> Tinker Preference Page

http://ggrov.github.io/tinker/abz2016/release/TinkerCore.tar.gz
http://ggrov.github.io/tinker/abz2016/release/TinkerCore.7z
http://ggrov.github.io/tinker/abz2016/release/tinkerGUI.zip
http://ggrov.github.io/tinker/abz2016/release/tinker.for.rodin.zip

a. Set default path as any folder you would like to save your PSGraph folder.

Do not worry about the slash direction, both directions will work regardless

of the operating system.

b. Set tinker Directory as the executable file of Tinker Core. If you are using

Windows System, the value should be like c:\Tinker\tinker.core.exe as

shown in the image.

c. Set tinker GUI directory as the .jar file of the tinkerGUI executable.

Now you have everything set, and the plugin is ready for work.

User Guide
1. Open any Rodin project, if there is an obligation that need to be proven, the T

button should appear enabled. Click on it and a progress bar should show up like all

other tactics.

2. If this is the first time you use, a file selection window will pop up, requiring you to

select a PSGraph file. For more information of how to create PSGraph file, please see

 Link to GUI manual

3. Wait until the Tinker GUI launches. The Tinker GUI should within few seconds.

4. After the GUI shows up, click on the connect button. And your GUI should show up

with connected button

5. You can now use Tinker GUI to guide Rodin and prove your obligation

Important Notice

A. When you are creating any new PSGraph with TinkerGUI or making any

modification, please ensure the proof session is closed (Clicked “STOP”

B. Every time you create a new PSGraph to work with Rodin, please

a. Copy the following text

tactic on_goal := on_goal;
tactic on_hyp := on_hyp;
tactic auto_tactic := auto_tactic;

b. In Tinker GUI, click menu -> Edit -> Open tactic editor

c. And paste in the opened window as shown in the image:

d. Click submit

e. File -> Save, and your PSGraph file is initialised.

The notice B is temporary, and will be changed in the future version.

