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Tactic based proving

LCF-based provers handle soundness by a
thm type and a kernel of trusted axioms
and inference rules

Proof automation by
programs called tactics

goal -> [goal]



Tactic based proving

Stack based goal propagation

pop first goal
apply tactic
push new sub-goal




Tactic based proving

Proof strategies from existing tactics by
tactical combinators

ti:1 THEN t»

t; OR t2; REPEAT t



Tactic based proving

tac mytac := t; THEN t,; THEN t, THEN t3
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t,
4
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Tactic based proving

Now, let us replace t: with the
“improved” tx tactic
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Tactic based proving

tac mytac := ty THEN t,; THEN t,; THEN t3

mytac(g) :




Debugging

where did it go wrong!

tac mytac := ty THEN t,; THEN t, THEN t3




Debugging

where did it go wrong!

tac mytac := tx THEN t, THEN t, THEN t3
A

error




Debugging

where did it go wrong!

actual
error

v
tac mytac := tx THEN t, THEN t; THEN tj;

A

error




Debugging

where did it go wrong!

or
here

4
tac mytac := tx THEN t; THEN t, THEN tj;

A

error




t, may also succeed here creating
unexpected sub-goals




Bugs may be easy to spot for this
example, but what if...




fun z_basic_prove_tac (thms:THM list) : TACTIC = (
TRY_T all var_elim_asm_ tac THEN
DROP_ASMS T (MAP_EVERY (strip_asm_tac o
(fn thm => rewrite_rule thms thm

handle (Fail ) => thm)) o rev) THEN

(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY_T all var elim_asm tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check _is_z false;

val res = (EXTEND _PC _TI "mmpl" all_ asm_fc tac[] THEN
(basic_res_tac2 3 [eq_refl thm]
ORELSE_T basic_res_tac3 3 [eq_refl_thm])) gl;
val = set check is z ciz;in res end)));
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fun z_basic_prove_tac (thms:THM list) : TACTIC = (
TRY_T all_ THEN

DROP_ASI aCtu al Y (strip_asm_tac o
(fnthm => | €FFOF | thm

handle Vv > rev) THEN
(TRY_T (rewrite_ tac thms)) THEN
REPEAT strip_tac THEN
TRY T all var elim_asm tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check _is_z false;
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handle (Fail ) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN

REPEAT strip_tac THEN
TRY_T all _var_elim_asm_tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;
val res = (EXTEND PC TI "mmpl" all_asm_fc_tac[] THEN
(basic_res _tac2 3 [eq_refl thm]
ORELSE_T basic_res_tac3 3 [eq_refl thm])) gl
val = set check is z ciz;in res end

N); error
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TRY _ T all_var_elim_asm_tac THEN
DROP_ASMS T (MAP_EVERY (strip_asm_tac o
(fn thm => rewrite_rule thms thm
handle (Fail ) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY T all var _elim_asm tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;
(basic_res tac? 3 [eq_refl thm]
ORELSE_T basic_res tac3 3 [eq_refl _thm])) gl;
val = set check is z ciz;in res end
(fn thm => rewrite rule thms thm
handle (Fail ) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY_T all var_elim_asm_tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;
(basic_res tac? 3 [eq_refl thm]
ORELSE_T basic_res tac3 3 [eq_refl _thm])) gl;
val = set check is z ciz;in res end
(fn thm => rewrite_rule thms thm
handle (Fail _) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
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TRY_T all_var_elim_asm_tac THEN
DROP_ASMS T (MAP_EVERY (strip_asm_tac o
(fn thm => rewrite_rule thms thm

handle (Fail ) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEM
REPEAT strip_tac THEN actual
TRY_T all var _elim_asm tacTH| @FFoOoVrY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;

(basic_res tac? 3 [eq_refl thm]

ORELSE_T basic_res_tac3 3 [eq_refl thm])) gl;

val = set check is z ciz;in res end
(fn thm => rewrite rule thms thm

handle (Fail ) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY_T all var_elim_asm_tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;

(basic_res tac? 3 [eq_refl thm]

ORELSE_T basic_res_tac3 3 [eq_refl thm])) gl;

val = set check is_z ciz;in res end
(fn thm => rewrite_rule thms thm

handle (Fail _) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN




Composing tactics

No (static) help to stop plugging
together tactics that do not fit

~



Composing tactics

Brittle since composition
relies on the number of goals




Composing tactics

Brittle since composition
relies on goal order




Instead of...

TRY T all var elim asm tac THEN

DROP_ASMS T (MAP_EVERY (strip asm tac o

(fn thm => rewrite rule thms thm
handle (Fail ) => thm)) o rev) THEN

(TRY T (rewrite tac thms)) THEN

REPEAT strip tac THEN

TRY T all var elim asm tac THEN TRY

(z_quantifiers elim tac THEN

(fn gl => let wval ciz = set check is z false;

val res = (EXTEND PC Tl "'mmpl" all asm fc tac]]
THEN (basic res tac2 3 [eq refl thm]
ORELSE T basic res tac3 3 [eq refl thm])) gl;
val = set check is z ciz; in res end)));
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Pipes connect tactics

The type of pipe used ensures
correct composition

4
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tactic tactic
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Loops

Repetition is simply a
feedback pipe

(

(

tactic

.

\

a looping

J
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Passing goals

Goals are passed to the next
tactic using the pipe

A goal must
fit in the pipe itis in



Passing goals

Multiple goals can be in the
same pipe at any time

%

abstracts over goal number and order




Hierarchies

Networks can be structured so a tactic can
itself be a pipe network




PSGraph

PSGraph formalises proof strategies as pipe
networks using string graphs

-

Cnl) typed graphs with dangling wires

[/ J




PSGraph composition

Graphs are composed by plugging dangling
output wires with dangling input wires

-
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PSGraph composition

Graphs are composed by plugging dangling
output wires with dangling input wires

- ) ()
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Connecting wires must have same type




PSGraph tactics

Generic with respect to underlying
theorem prover

- I
A node can be an atomic Hmy_tac]

tactic of the theorem prover ¢

[/ J




PSGraph tactics

A node can also be a graph tactic
containing one more graphs



PSGraph evaluation

Token style evaluation where goals are
sent over the wires

4 )

Represented by a

special goal node in the graph/>¢

\_




PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs
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PSGraph evaluation

consume one input goal node
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Aot
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consume one input goal node
produce new goal nodes on outputs




PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

t(g) [h,i]
.- t )
@




PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

t(g) [h,i] |




PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

t(g) hi1 |
""" Joseh
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formalised as graph rewriting




PSGraph evaluation

multiple goals may be produced on each
output wire

but a goal hode must satisfy
the goal type on that particular wire



Goal types

Predicates on goal nodes to ensure correct
plugging and evaluation
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Goal types

PSGraph is generic w.r.t goal types. Here
is one illustrative example:

goaltype := top_symbol([string])
| not(goaltype)




Example

Repeated forall introduction can be
represented as follows

top symbol[All] |

\
( ( )
rule allI
\_ )
N )

not(top symbol[All])

top symbol[All]



declare [[psgraph =
lemma "rev (11 @ 12)

v apply ipsgraph

100% v

induct ripple]]
= rev 12 @ rev 11"

v Auto update

Open goals in the current psgraph :{

[ Goal g
}

B ¥  Qutput README Symbols

_ 151,14 (5356/5503) (isabelle,sidekick, UTF-8-Isabelle)

rev (11 @ 12) = rev 12 @ rev 11 ]
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Combinators

Graphs can be programmed and combined
using graphical idioms

G THEN H

G TENSOR G’ REPEAT,(G)
/ / 71




Conclusion

PSGraph

proof strategies as graphs
abstracts over goal number and order

abstracts over evaluation order and search
has static composition properties

I.

easier to debug, understand & maintain



