A Graphical Language

for Proof Strategies

i Gudmund Grov
Yuhui Lin

]——[Aleks Kissinger

HERIOT
T WATT

% UNIVERSITY

funded by EPSRC grants: EP/H023852, EP/H024204 and EP/J001058, the John Templeton

Foundation and the Office of Navel Research

Tactic based proving

LCF-based provers handle soundness by a
thm type and a kernel of trusted axioms
and inference rules

Proof automation by
programs called tactics

goal -> [goal]

Tactic based proving

Stack based goal propagation

pop first goal
apply tactic
push new sub-goal

Tactic based proving

Proof strategies from existing tactics by
tactical combinators

ti:1 THEN t»

t; OR t2; REPEAT t

Tactic based proving

tac mytac := t; THEN t,; THEN t, THEN t3

Tactic based proving

tac mytac := t; THEN t,; THEN t, THEN t3

mytac(g) :

Tactic based proving

tac mytac := THEN t2 THEN t,; THEN t3

t,
4

mytac(g) :

Tactic based proving

tac mytac := ti; THEN t; THEN t; THEN ts3
A

mytac(g) := /(t}\

Tactic based proving

tac mytac := ti1 THEN t; THEN t; THEN ts3
A

mytac(g) := /(t}\

Tactic based proving

tac mytac := t; THEN t, THEN t, THEN t3
A

mytac(g) := @
(t2

Tactic based proving

tac mytac := t; THEN t, THEN t; THEN t3
A

mytac(g) := @
(t2

Tactic based proving

tac mytac := t:; THEN t; THEN t; THEN t3
A

mytac(g) := @
(t2)(e2

Tactic based proving

tac mytac := ti THEN t; THEN t, THEN t3
A

mytac(g) := @
(t2)(e2

Tactic based proving

tac mytac := t; THEN t,; THEN t, THEN t3

mytac(g) := @
()& (e

Tactic based proving

Now, let us replace t: with the
“improved” tx tactic

Tactic based proving

tac mytac := tx THEN t; THEN t; THEN ts3
A

mytac(g) :

Tactic based proving

tac mytac := tx THEN t; THEN t; THEN ts3
A

mytac(g) :

Tactic based proving

tac mytac := tx THEN t; THEN t; THEN ts3
A

mytac(g) := @R

Tactic based proving

tac mytac := tx THEN t; THEN t; THEN t3
A

mytac(g) := @R

Tactic based proving

tac mytac := tx THEN t; THEN t; THEN ts3
A

mytac(g) := @
(t2

Tactic based proving

tac mytac := tyx THEN t; THEN t; THEN ts3
A

mytac(g) := @
(t2

Tactic based proving

tac mytac := tyxy THEN t, THEN t, THEN t3
A

mytac(g) := @
(t2

Tactic based proving

tac mytac := ty THEN t,; THEN t,; THEN t3

mytac(g) :

Debugging

where did it go wrong!

tac mytac := ty THEN t,; THEN t, THEN t3

Debugging

where did it go wrong!

tac mytac := tx THEN t, THEN t, THEN t3
A

error

Debugging

where did it go wrong!

actual
error

v
tac mytac := tx THEN t, THEN t; THEN tj;

A

error

Debugging

where did it go wrong!

or
here

4
tac mytac := tx THEN t; THEN t, THEN tj;

A

error

t, may also succeed here creating
unexpected sub-goals

Bugs may be easy to spot for this
example, but what if...

fun z_basic_prove_tac (thms:THM list) : TACTIC = (
TRY_T all var_elim_asm_ tac THEN
DROP_ASMS T (MAP_EVERY (strip_asm_tac o
(fn thm => rewrite_rule thms thm

handle (Fail) => thm)) o rev) THEN

(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY_T all var elim_asm tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check _is_z false;

val res = (EXTEND _PC _TI "mmpl" all_ asm_fc tac[] THEN
(basic_res_tac2 3 [eq_refl thm]
ORELSE_T basic_res_tac3 3 [eq_refl_thm])) gl;
val = set check is z ciz;in res end)));

fun z_basic_prove_tac (thms:THM list) : TACTIC = (
TRY_T all var elim_asm_ tac THEN
DROP_ASMS T (MAP_EVERY (strip_asm_tac o
(fn thm => rewrite_rule thms thm

handle (Fail) => thm)) o rev) THEN

(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY_T all var elim_asm_ tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check _is_z false;

val res = (EXTEND _PC TI "mmpl" all asm_fc tac[] THEN
(basic_res_tac2 3 [eq_refl thm] *

ORELSE_T basic_res_tac3 3 [eq 1

val = set check is z ciz;in res e error

fun z_basic_prove_tac (thms:THM list) : TACTIC = (
TRY_T all_ THEN

DROP_ASI aCtu al Y (strip_asm_tac o
(fnthm => | €FFOF | thm

handle Vv > rev) THEN
(TRY_T (rewrite_ tac thms)) THEN
REPEAT strip_tac THEN
TRY T all var elim_asm tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check _is_z false;

val res = (EXTEND _PC TI "mmpl" all_ asm_fc tac[] THEN
(basic_res_tac2 3 [eq_refl thm]
ORELSE_T basic_res_tac3 3 [eq 1

val = set check is z ciz;in res e error

\"- - =it aEE_ T AR a= =R
handle (Fail) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN

REPEAT strip_tac THEN
TRY_T all _var_elim_asm_tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;
val res = (EXTEND PC TI "mmpl" all_asm_fc_tac[] THEN
(basic_res _tac2 3 [eq_refl thm]
ORELSE_T basic_res_tac3 3 [eq_refl thm])) gl
val = set check is z ciz;in res end

N); error

ullh WA] IJ VVU WA - \UIIIIIJ R R 1 9\-/ 17 VNN 1 1 N \

TRY _ T all_var_elim_asm_tac THEN
DROP_ASMS T (MAP_EVERY (strip_asm_tac o
(fn thm => rewrite_rule thms thm
handle (Fail) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY T all var _elim_asm tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;
(basic_res tac? 3 [eq_refl thm]
ORELSE_T basic_res tac3 3 [eq_refl _thm])) gl;
val = set check is z ciz;in res end
(fn thm => rewrite rule thms thm
handle (Fail) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY_T all var_elim_asm_tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;
(basic_res tac? 3 [eq_refl thm]
ORELSE_T basic_res tac3 3 [eq_refl _thm])) gl;
val = set check is z ciz;in res end
(fn thm => rewrite_rule thms thm
handle (Fail _) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN

AL | h f AN | - IJ VV\' WA - \‘—I Il R ide § & Uh, S B \

TRY_T all_var_elim_asm_tac THEN
DROP_ASMS T (MAP_EVERY (strip_asm_tac o
(fn thm => rewrite_rule thms thm

handle (Fail) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEM
REPEAT strip_tac THEN actual
TRY_T all var _elim_asm tacTH| @FFoOoVrY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;

(basic_res tac? 3 [eq_refl thm]

ORELSE_T basic_res_tac3 3 [eq_refl thm])) gl;

val = set check is z ciz;in res end
(fn thm => rewrite rule thms thm

handle (Fail) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN
TRY_T all var_elim_asm_tac THEN_TRY
(z_quantifiers_elim_tac THEN
(fn gl => let val ciz = set_check_is_z false;

(basic_res tac? 3 [eq_refl thm]

ORELSE_T basic_res_tac3 3 [eq_refl thm])) gl;

val = set check is_z ciz;in res end
(fn thm => rewrite_rule thms thm

handle (Fail _) => thm)) o rev) THEN
(TRY_T (rewrite_tac thms)) THEN
REPEAT strip_tac THEN

Composing tactics

No (static) help to stop plugging
together tactics that do not fit

~

Composing tactics

Brittle since composition
relies on the number of goals

Composing tactics

Brittle since composition
relies on goal order

Instead of...

TRY T all var elim asm tac THEN

DROP_ASMS T (MAP_EVERY (strip asm tac o

(fn thm => rewrite rule thms thm
handle (Fail) => thm)) o rev) THEN

(TRY T (rewrite tac thms)) THEN

REPEAT strip tac THEN

TRY T all var elim asm tac THEN TRY

(z_quantifiers elim tac THEN

(fn gl => let wval ciz = set check is z false;

val res = (EXTEND PC Tl "'mmpl" all asm fc tac]]
THEN (basic res tac2 3 [eq refl thm]
ORELSE T basic res tac3 3 [eq refl thm])) gl;
val = set check is z ciz; in res end)));

2 m r”la

N

Pipes connect tactics

The type of pipe used ensures
correct composition

4

e

\ ‘ r \
a another

tactic tactic

J \. J

Loops

Repetition is simply a
feedback pipe

(

(

tactic

.

\

a looping

J

\

Passing goals

Goals are passed to the next
tactic using the pipe

A goal must
fit in the pipe itis in

Passing goals

Multiple goals can be in the
same pipe at any time

%

abstracts over goal number and order

Hierarchies

Networks can be structured so a tactic can
itself be a pipe network

PSGraph

PSGraph formalises proof strategies as pipe
networks using string graphs

-

Cnl) typed graphs with dangling wires

[/ J

PSGraph composition

Graphs are composed by plugging dangling
output wires with dangling input wires

-

/
||

-

PSGraph composition

Graphs are composed by plugging dangling
output wires with dangling input wires

-) ()
7 B
(-] =

Connecting wires must have same type

PSGraph tactics

Generic with respect to underlying
theorem prover

- I
A node can be an atomic Hmy_tac]

tactic of the theorem prover ¢

[/ J

PSGraph tactics

A node can also be a graph tactic
containing one more graphs

PSGraph evaluation

Token style evaluation where goals are
sent over the wires

4)

Represented by a

special goal node in the graph/>¢

_

PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

Aot

PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

t(g) [h,i]
.- t)
@

PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

t(g) [h,i] |

PSGraph evaluation

consume one input goal node
produce new goal nodes on outputs

t(g) hi1 |
""" Joseh
@) BhEEE- it

formalised as graph rewriting

PSGraph evaluation

multiple goals may be produced on each
output wire

but a goal hode must satisfy
the goal type on that particular wire

Goal types

Predicates on goal nodes to ensure correct
plugging and evaluation

4 A
&8
4 N | 4)
a another

tactic tactic

\. J \. J

Goal types

PSGraph is generic w.r.t goal types. Here
is one illustrative example:

goaltype := top_symbol([string])
| not(goaltype)

Example

Repeated forall introduction can be
represented as follows

top symbol[All] |

\
(()
rule allI
_)
N)

not(top symbol[All])

top symbol[All]

declare [[psgraph =
lemma "rev (11 @ 12)

v apply ipsgraph

100% v

induct ripple]]
= rev 12 @ rev 11"

v Auto update

Open goals in the current psgraph :{

[Goal g
}

B ¥ Qutput README Symbols

_ 151,14 (5356/5503) (isabelle,sidekick, UTF-8-Isabelle)

rev (11 @ 12) = rev 12 @ rev 11]

4

JaMIIA 133f0ud

Tool'Demo

SauoaYl NIy

UCBE3/411MB 12:22 |

(8

¥ Re-Layout Finis|
inductable
inductable
induct

rippling rippling

i / not(hyp_ embeds)

rippling

[sim
rippled P

Combinators

Graphs can be programmed and combined
using graphical idioms

G THEN H

G TENSOR G’ REPEAT,(G)
/ / 71

Conclusion

PSGraph

proof strategies as graphs
abstracts over goal number and order

abstracts over evaluation order and search
has static composition properties

I.

easier to debug, understand & maintain

