Tinker : user guide.
Yuhui LIN, Pierre LE BRAS & Gudmund GROV.

October 2015

Tinker : user guide Contents

Contents
1 Preamble 2
2 Getting started 4
2.1 Imstallation 4
2.2 Theinterface L L 4
3 PSGraph edition 6
3.1 Drawingagraph, 6
3.1.1 Controls 6
3.1.2 Nodes & tactics. 7
313 Edges 8
3.1.4 PSGraphs library 0oL 10
3.1.5 Using unicode characters 12
3.2 Hierarchies 12
4 PSGraph evaluation 15
4.1 Evaluationsetup 15
4.1.1 GUIL . ..o 15
4.1.2 Prover e 15
4.2 Starting the evaluation 16
4.3 Running the evaluation 17
4.3.1 Evaluation options 17
4.3.2 Evaluationlog 17
4.4 Editing while evaluating 18
5 Saving and exporting psgraphs 19
6 Web application 20
6.1 Recordings 20
6.2 Generating the web application 20
6.3 Using the web application 21
6.3.1 Hosting recordings, 21
6.3.2 Loading local recording file 21
6.3.3 Theinterface oL 22

Tinker : user guide

1. Preamble

1 Preamble

Proof Strategies Graphs

In traditional theorem proving, proof
strategies are encoded by programs called
tactics. The purpose of a tactic is to
work on a goals and reduce them into
a set of simpler subgoals. Combining
those tactics (setting the output of one
as the input of another) enables to con-
struct complex proofs. However the result-
ing goal pipeline can often be hard to un-
derstand and therefore to debug or mod-

ify.

To address this issue, a graphical proof
strategies, called PSGraph, has been devel-
oped!. Tactic are now represented as nodes
on the graph and then wired together, sym-
bolising the goal flow between them (See
figure 1.1).

Terminology

Figure 1.1: Example of a PS-
Graph.

e A tactic is represented has a node on a psgraph. PSGraph allows

three kinds of tactics :

— Identity tactic, that does not affect the goals, symbolised by a
blue triangle (identity node : A)

— Atomic tactic, that encode a simple operation, it is identify by
its name and symbolised by a green rectangle (atomic node : F
). Not that one atomic tactic can be linked to one or more atomic
node, the label on the node will therefore contain the tactic name
and possibly arguments specific to this node ;

!Gudmund Grov, Aleks Kissinger, and Yuhui Lin. “A Graphical Language for Proof
Strategies”. In: Logic for Programming, Artificial Intelligence, and Reasoning. Springer.

2013, pp. 324-339.

Tinker : user guide 1. Preamble

— Graph tactic, that contains one or more subgraphs. The possi-
bility to nest graphs is motivated by the fact that it can simplifies
a complex proof reusing the same atomic tactics in the same or-
der for instance. Also having multiple subgraphs can be viewed
as allowing different path in the proof (e.g. Do that, or if it fails
do that”). Graph tactic are symbolised by a orange double rect-
angle (nested node :). Again a graph tactic can be linked to
one or mode nested node, the label will be constructed like the
atomic nodes ;

A goal is also represented has a node on a psgraph, a circle (goal node

. @). A goal is identified by a name (e.g. a) which is also the label
used on the node, and holds a value (e.g. P A Q) ;

A breakpoint is a special node that will block goal nodes in the debug

mode of a psgraph evaluation, it is similar to a stop sign (@) ;

A boundary is a node only there to represent the start and/or end
points of a graph, it is represented with a small black square (|) ;

e An edge between two nodes has different meanings :

— Between two tactic nodes (A and B, whatever is their type) : it
shows that the resulting goals of tactic A will be the input goals
of tactic B ;

— Between a goal nodes and any other node : it shows the presence
of one goal on this edge (i.e. it was produce by one tactic or it is
the starting goal of a graph, but has yet to be consumed by one
tactic or to be returned as the result of a graph) ;

Tinker
Tinker is the software implementing psgraphs for common theorem provers
(e.g. Isabelle or ProofPower).

It comprises two part :

e a core interacting with the prover, computing the results of operations
applied on goals and transposing the results in a psgraph structure ;

e a GUI allowing the drawing of psgraph and communicating with the
core to evaluate them.

Tinker : user guide 2. Getting started

2

2.1

Getting started

Installation

Download the archive file on the website! and extract it.

File listing TBD.

Prover Setup TBD.

Under the directory tinkerGUI you will find the files for the GUI :

tinkerGUI-[version/.jar the jar file actually running the GUI (a Java
Virtual Machine is necessary to run it) ;

tinker_library a directory containing psgraph template ;

guiLauncher_[os-version].so/dll a C library library allowing the GUI
to be launched from a prover ;

unicodeConfig a Json file listing customisable shortcuts for unicode
characters ;

web app a directory containing template files to build a tinker web
application.

To run the GUI the .jar should have the permission to be executed, then
a double-click will launched it. Alternatively it can be launched by opening
a console and entering the following commands :

cd path/to/tinkerGUI
java -jar tinker-[version].jar

2.2

The interface

Figure 2.1 presents the interface on its startup, i.e. with an empty project.
The interface is divided in different parts (see figure 2.2) :

Lggrov.github.io/tinker

http://ggrov.github.io/tinker/

Tinker : user guide 2. Getting started

Foee — —
ENEERDIE Setect atocie] |

Figure 2.1: Tinker GUI on start.

Menu bar
Edit and evaluation controls

Tactic inspector

Library panels
VI Graph panel

Node information
panel

Figure 2.2: Tinker GUI explained.

e a menu bar on the top ;

library panels (one file tree and one preview panel) on the left ;

a central graph editing area ;

controls on top of the editing area ;

e a (graph) tactic inspector on the right ;

a node information panel below the tactic inspector.

Tinker : user guide 3. PSGraph edition

3

3.1

PSGraph edition

Drawing a graph

3.1.1 Controls

Figure 3.1: Drawing controls buttons.

On top of the main graph area five drawing modes can be selected :

the Select mode () allows you to select a node on the graph, to
display its information, move it on the graph (by dragging it) or even
edit the tactic it is linked to (double click). You can also select multiple
nodes at the same time by dragging a selection box around them or
holding the Shift key while clicking on them. This mode can also be
selected by pressing the S key ;

the Draw identity tactic mode (4) allows you to add an identity
tactic node on the graph. This can also be done via the context menu
(right-click on a empty area in the graph), selecting the Add an identity
node option. This mode can also be selected by pressing the I key ;

the Draw atomic tactic mode (D) allows you to add an atomic
tactic node on the graph. This can also be done via the context menu
(right-click on a empty area in the graph), selecting the Add an atomic
tactic node option. This mode can also be selected by pressing the A
key ;

the Draw graph tactic mode (=) allows you to add a graph tactic
node on the graph. This can also be done via the context menu (right-
click on a empty area in the graph), selecting the Add a graph tactic
node option. This mode can also be selected by pressing the N key ;

the Draw edge mode (*3) allows you to add an edge on the graph.
This mode can also be selected by pressing the E key.

Tinker : user guide 3. PSGraph edition

Also note that you can :
e copy and paste nodes using Ctrl+C and Ctri+V ;
e delete a selected node by pressing the Delete key ;

e undo and redo actions using Ctrl+Z and Ctri+Shift+Z.

3.1.2 Nodes & tactics

w0

% Tinker - Edition |
Create graph tactic
Name: [nested | @ Tinker - Confirmation

Branchtype: ® OR O ORELSE The graph tactic name nested is already deflned.;

| Create new || Link node to tactic |

Figure 3.2: Creating a graph tactic

Figure 3.3: Confirmation dialog in
named nested.

case a name is already taken.

To use a tactic in a psgraph you should first draw a tactic node on the
graph area. Drawing an atomic or graph tactic node will launch a dialog
where can edit the name of your tactic and, in the case of graph tactics,
specify the branching type, i.e. OR or ORELSE (see figure 3.2). In the case
that this name is already taken by another tactic of the same type, another
dialog will ask your confirmation to link this node with this existing tactic
(see figure 3.3).

Each node can also take arguments. To specify arguments insert them
between parenthesis after the tactic name. Arguments are linked to nodes
therefore for the same tactic A there can be two nodes : one taking an ar-
gument z (write A(z) in the name field when creating the tactic) and one
taking two arguments y and z (write A(y,z)). Arguments are separated by
commas.

You can check the informations of a node by selecting it, these infor-
mation will appear in the Node Information panel (see figure 3.4). The
informations displayed in this panel will depend on the type of node se-
lected. Also this panel offers a range of actions, again depending on the

Tinker : user guide 3. PSGraph edition

vz

B -

Node Information

‘| node : v2
‘| Type : Graph tactic
‘| Name : nested

i| Branch type : OR

Q®

D

Figure 3.4: Node Information panel.

type of node selected.

To update a tactic name or the arguments used by a node : double click
on the node (in selection mode) or right-click on it and select the Edit node
option or in the Node Information panel select the edit icon (). A dialog
will then appear, similar to the node creation dialog. If a duplicated tactic
(i.e. linked to more than one node) is updated, there can be two options :
either create an entirely new tactic, or update all the nodes linked to it.

You can write a definition for an atomic tactic directly in the GUI (if it
is not already done in the core). To do so : open the menu Fdit in the menu
bar and select Open tactic editor and write your definition. The syntax used
to make tactic definition is as follow :

tactic [name] := [definition];

When done, click Submit or close the window.

To delete a node, select it and press the Delete key or click the delete
icon in the node information panel (¥, 3 or @), This can also be done by
right-clicking on the node and select Delete node in the context menu.

3.1.3 Edges

To draw an edge select the draw edge mode, click on the graph where to
start the edge and drag it to its destination. Clicking on a node will start
the edge from this node, clicking on an empty space will create a boundary
node to start the edge from it. Dragging to a node will set it as the edge
destination, dragging to an empty space will create a boundary node and

Tinker : user guide 3. PSGraph edition

set it as the edge destination.

There are few rules when it comes to drawing edges :

e one cannot draw an edge between two boundary nodes (i.e. between
two empty spaces) ;

e one cannot draw an edge to or from a boundary node ;
e one cannot draw an edge to or from a breakpoint ;

e one cannot draw an edge to or from a goal node.

1 :
VA | Edge Information
any

Edge : eD

Goal types : any

vl

From: vl To : vO

B\ X

Figure 3.5: Edge Information panel.

You can view the informations associated with an edge by selecting it
and it will appear in the Node information panel (renamed FEdge informa-
tion), along with buttons to edit this edge (see figure 3.5).

You can modify the source and target of an edge by clicking on the edge
next to the node and dragging it to the new source / target. Note That the
previous rules about drawing an edge will still apply along with the follow-
ing rule : one cannot modify the source / target of an edge if this source /
target is a breakpoint or a goal node.

To change the goaltype of an edge, double click on the edge or click on
the edit icon in the Edge Information panel (+). A dialog will then ap-
pearwhere the edge goaltype can be edited, along with the id of the source
and target nodes (see figure 3.6). This dialog can also be launched by right-
clicking on the edge and selecting the Edit edge option.

Tinker : user guide 3. PSGraph edition

Tinker - Edition
Edit edge e0

top symbol(=)
Goal types :

From: |v1

To: w0

Figure 3.6: Edge update dialog.

To insert a breakpoint on a edge, you can click on the insert breakpoint
icon (R) in the Edge Information panel, or right-click on the edge and select
the Add breakpoint option in the context menu. Although it appears that
it became two edges with a breakpoint node in between, it is really a sin-
gle edge, therefore the only option regarding breakpoints on this edge is to
remove the one previously created by right-clicking on any part of the edge
or the breakpoint and selecting the remove breakpoint option in the context
menu, or selecting the edge or the breakpoint and clicking on the remove
breakpoint icon (\) in the Node/Edge Information panel.

Deleting an edge can be done by selecting it and pressing the Delete key,
right-clicking on it and selecting the Delete edge option in the context menu,
or clicking on the delete edge icon (¥) in the Edge Information panel.

3.1.4 PSGraphs library

The left side of the interface contains two panels dedicated to a PSGraph
library. The purpose of this library is to introduce reusability of psgraphs.
This directory will contain many templates that can be easily inserted in
your graph.

Figure 3.7 presents the panels to make use of this library. On the top a
file tree allows you to navigate through it. On the bottom a preview panel
will present the psgraph that would have been selected in the file tree. This
preview is fully navigable, i.e. any graph tactic in the hierarchy can be in-

10

Tinker : user guide 3. PSGraph edition

File Edit Debug Record

Library R, SC

3 tinker_library

o [dummyGraphs

¢ Cisabele
[demo_flat.psgraph
[y demo_hie.psgraph
D demo_pred.psgraph

o= 9 subfalder 1
o Jrodin

demo_hie.psgraph preview

G| 0o @ Q

[Tr

assm()

any

[T

< Il [Tr]

Figure 3.7: The Library panels.

spected (using the dropdown selection) and all their subgraph viewed (using
the navigation icons).

To import a psgraph from the library to the graph area click on the
import icon (#*). The psgraph will then be directly added to your current
graph. All the graph tactic that would be present in the psgraph from the
library will then be renamed [file name]-[tactic name] (note that an
index might be appended in case this name is already taken), and their sub-
graph imported as well. The atomic tactic will also be imported, if they
append to be existing in your psgraph (i.e. if your psgraph contains an
atomic tactic with the same name), their definition will be merged, the def-
inition you provided being prioritised.

To use your own psgraphs in the library, simply save them under the

11

Tinker : user guide 3. PSGraph edition

folder named tinker_library, that should remain under the same directory as
the tinkerGUI-[version].jar file.

3.1.5 Using unicode characters

As the prover from which you are using tinker might be using mathematical
symbols (e.g. A, V , =), you might want to use them in the GUI as well
(e.g. defining goal types). To do so tinker allows you to define your own
shortcuts to write them. In the file named wunicodeConfig (which already
contains a set of shortcuts), you can edit them in the json format (key-value

pair) :

b

"your_shorcut " : "the_unicode_character_code ",

Note that if you wish to start your shorcut with \ it should be escaped,
using another \ before. The space after the shortcuts is preferable in order
to avoid mixing them. The unicode character code should start with a \u,
completed with 4 digits. For example to use the shortcut \implies with =

"\\implies " : "\u21D2 ",
The characters will be printed as you type them.

3.2 Hierarchies

To start using hierarchies in PSGraph you will first need to create a graph
tactic. Then you will have to insert a first subgraph in this tactic, to do
so : right-click on a node linked to this tactic and select the Add subgraph
option in the context menu, you can also click on the add subgraph icon (*4*)
in the Node Information panel. You will then have an empty subgraph in
the graph area, that can be edited.

There are many tools to easily follow on which graph you are actually
working on. Figure 3.8 presents three of them, on top of the graph area :

e the icon & will open a hierarchy tree window (figure 3.9), displaying a
tree showing the hierarchy, and highlighting the graph tactic currently

12

Tinker : user guide 3. PSGraph edition

@ - o0 Tinker - scratch* - hierarchy tree

cratch » nestedl » nested2 @ 23mp @ Q 4 X

1 i I [y

[«]

Figure 3.8: Hierarchy controls. Figure 3.9: Hierarchy
tree.

edited. Clicks on the tree nodes will switch the currently edited graph
tactic ;

e next to this icon are breadcrumbs showing a path, from the root graph
tactic to the currently edited graph tactic. All the labels displayed in
blue are clickable, and will switch the currently edited graph tactic ;

e finally on the right, icons will help you switch between subgraphs of
the same graph tactic (4 =), the add icon (+) will append a new
subgraph to the graph tactic, the delete icon (*) will remove the
currently displayed subgraph, finally the zoom-in/out icons (®)
will increase/decrease the zoom level of the graph.

If you just need to see what is the subgraphs of a graph tactic, you can
use the tactic inspector (see figure 3.10). From this panel you can select any
graph tactic in your psgraph using the dropdown list. Once it is selected, it
will display a preview of its subgraph, which can again be change using the
navigation icons, the add, delete, zoom-in and zoom-out icons also have the
same purpose (note that the add icon will switch the currently edited graph
tactic). The edit icon () will switch the currently edited graph tactic, and
set the current subgraph to the one you were previewing. Apart from the
dropdown list, you can also inspect a graph tactic by selecting a node linked
to it, right-click on this node and select the Inspect option in the context
menu, or click on the inspect icon (R) in the Node Information panel.

Another way to make hierarchies is to merge nodes on a graph into a
graph tactic. To do so, select many nodes (using a selection box or pressing

13

Tinker : user guide 3. PSGraph edition

= X Tactic inspector

[petez [7] @asmi@ @ /4 X

/T I

[restedd]

[4]

LK 1l [1*]

Figure 3.10: Tactic Inspector.

Shift while selecting them), then click the Merge nodes button in the Node
Information panel, or the option with the same name in the context menu,
once you right-click on them. A dialog will then appear to set up the name
of the graph tactic in which those node will be merged.

To set the top-level graph tactic name (its default value is scratch), go to
the Edit menu in the menu bar, and select the Change proof name option,
which will display a dialog from which you can perform the operation.

14

Tinker : user guide 4. PSGraph evaluation

4 PSGraph evaluation

4.1 Evaluation setup

To start the evaluation, you will first need to specify a psgraph and goal.
This can be done in GUI and/or in the prover.

4.1.1 GUI

® Tinker - Edition

Edit goal

Assumptions :

Goal: P —(PaPn(Q—qh

Figure 4.1: Editing a goal in the interface.

If a psgraph has been opened or edited in the GUI, there is nothing else
to do regarding it. To specify a goal, you will need to edit it : click on the
goal icon (©) next to the drawing mode icons, on top of the graph. This
will trigger a dialog (see figure 4.1) where you can edit two fields :

e the assumptions you are making ;
e the actual goal.

From there this psgraph and this goal will be used for evaluation, pro-
vided that there are not define in the prover. The evaluation protocol will
always prioritize the fields specified in the prover. For instance if there
are psgraphs define in the prover and in the GUI, the psgraph that will be
evaluated is the one in the prover. The same applies for goals.

4.1.2 Prover

Isabelle Isabelle proof setup TBD.

15

Tinker : user guide 4. PSGraph evaluation

ProofPower ProofPower proof setup TBD.

Rodin Rodin proof setup TBD.

4.2 Starting the evaluation

Figure 4.2: Evaluation controls.

The GUI controls for the evaluation are located on top of the graph, see
figure 4.2.

You will first need to instantiate socket ports in the GUI. Click on the
connection icon (#%). After that the GUI will enter a listening mode and
wait for a connection from the prover.

Isabelle Starting eval in Isabelle TBD.
ProofPower Starting eval in ProofPower TBD.

Rodin Starting eval in Rodin TBD.

When the connection is established the evaluation protocol will start
automatically. The connection icon should be two full arrows (), some
evaluation options should become available and the psgraph with a first
goal on it should be displayed. Check the evaluation log if you do not get
the graph you expected, an error might have occur in the initiation process.

16

Tinker : user guide 4. PSGraph evaluation

4.3 Running the evaluation

4.3.1 Evaluation options

The evaluation process is done step by step, for each of them you can choose
an evaluation option. Tinker has 9 options :

e next (**) : the most common option, will process one goal, the first of
the default order or the one that has been selected ;

e undo (*) : goes back to the state before the last evaluation options
was selected ;

e step into (<) : if a goal is selected and before a graph tactic, will force
the goal to go inside it ;

e step over (=) : if a goal is selected and before a graph tactic, will
ignore the steps inside the graph tactic and directly give its output ;

e finish (M) : will automatically run the evaluation until there are no
more goals in the current graph tactic ;

e backtrack (") : will switch branches in the evaluation ;

o until break (**) : will automatically run the evaluation until one goal
finds itself on an edge with a breakpoint ;

e complete (™) : will automatically run the evaluation until there are
no more goals or all remaining goals are on the output edges of the
top-level graph ;

o stop (®) : will stop the evaluation, but keep the connection between
the prover and the GUI alive.

If an evaluation has been stopped (with the connection still alive), it can
be restarted the same way you started it in the prover.

4.3.2 Evaluation log

To follow informations given by the prover on the evaluation (e.g. goal re-
maining), consult the evaluation log (figure 4.3). It can be accessed via the
Debug menu, selecting the Open eval log window option.

A filter list on the left will allow you to only print the type of information
that you want. You can also clear the messages received via the Options
menu.

17

Tinker : user guide 4. PSGraph evaluation

@ - 0 Tinker - eval log

Options
Filters : > EVAL_MC : cmd in exec_buffer - SimpleGoa(Type, Goa(Typ_ML_Exec.exec_buffer := ({(GT [«
[v] EvAL | top_symbol ["HOL.conj"1)} |> SOME handle _ => NONE) m
] EVAL ML > EVAL_ML : cmd in exe(ihuffel_' - SimpleGoalType.GoalTyp_ML_Exec.exec_buffer := ((GT

- | NOT (GT_top_symbol ["HOL.conj"1 }) |> SOME handle _ => NONE)
[¥] GOALTYPE > EVAL_ML : cmd in exec_buffer - SimpleGoalType.GoalTyp_ML_Exec.exec_buffer := ((GT
[ENV_DATA | top_symbol ["HOL.conj"1) |> SOME handle _ => NONE)

> GOALTYPE : init goal b with goal type: GT_NOT (GT_top_symbol ["HOL.conj"]1)
> GOALTYPE : GT_NOT (GT_top_symbol [“HOL.conj"]) returns true !

> GOALTYPE : init goal b with goal type: GT_top_symbel [“HOL.conj"]

> GOALTYPE : GT_top_symbol ["HOL.conj"] returns false !

= GOALTYPE : init goal c with goal type: GT_NOT (GT_top_symbol ["HOL.conj"])
> GOALTYPE : top level is: conj by checkingconj

> GOALTYPE : GT_NOT (GT_top_symbol [“HOL.conj"]) returns false !

> GOALTYPE : init goal ¢ with goal type: GT_top_symbol [“HOL.conj"]

> GOALTYPE : top level is: conj by checkingconj

= GOALTYPE : GT_top_symbol ["HOL.conj"] returns true !

> GOALTYPE : init goal b with goal type: GT_NOT (GT_top_symbol ["HOL.conj"])
> GOALTYPE : GT_NOT (GT_top_symbol [“HOL.conj"]) returns true !

> GOALTYPE : init goal b with goal type: GT_top_symbol [“HOL.conj"]

= GOALTYPE : GT_top_symbol ["HOL.conj"] returns false !

> GOALTYPE : init goal ¢ with goal type: GT_NOT (GT_top_symbol ["HOL.conj"])
> GOALTYPE : top level is: conj by checkingconj

> GOALTYPE : GT_NOT (GT_top_symbol [“HOL.conj"]) returns false !

> GOALTYPE : init goal ¢ with goal type: GT_top_symbol [“HOL.conj"]

> GOALTYPE : top level is: conj by checkingconj

> GOALTYPE : GT_top_symbol ["HOL.conj"] returns true !

Figure 4.3: Evaluation log.

4.4 Editing while evaluating

As you might want to correct things while evaluating a psgraph, Tinker
allows you to make changes on it without having to stop and restart the
evaluation. Although most of the edit option are available, there are restric-
tions (regarding graph tactics hierarchies mainly).

In any case a message will automatically appear on the top left-hand
corner of the graph area informing you that evaluation may not be sound
anymore (for instance after update a tactic that has already processed goals).
This message will be disable when you stop evaluation.

After changes are made, you will notice that the only option available
to you is to push your changes to the prover (#). If the changes fail on
the prover, you will be able to retrieve a working psgraph by pulling it (£).
Otherwise the proof will continue as normal.

18

Tinker : user guide 5. Saving and exporting psgraphs

5 Saving and exporting psgraphs

When saving a psgraph for the first time, use the Save as option in the File
menu. You will be able to select a directory in which to save the psgraph, as
well as a file name. Please note that Tinker will only the extension .psgraph
when opening it back.

To save changes on a psgraph you already opened in Tinker, you can use
the Save option (again in the File menu), which would rewrite the file from
which it was opened from. This option is also accessible using the Ctri+s
shortcut.

You can open a psgraph from Tinker using the Open option in the File
menu. Note that this will overwrite the psgraph you were probably working,
therefore you should make sure it is saved before-hand. You can also access
the previous psgraphs you were working on quickly, in the Recent files sub-
menu.

Tinker also allows you to export the current graph in a SVG image file,
select the FExport in SVG option. It will trigger a save dialog, from which
you can select the destination file.

19

Tinker : user guide 6. Web application

6 Web application

In order to easily present your proof to a larger audience, Tinker allows you
to perform recordings on a psgraph edition an evaluation, recordings which
can then be visualized via a dedicated web application.

6.1 Recordings

All of the recording action are made through the Recording menu in the
menu bar. The following steps explain how to perform a recording :

e you will first need to select on which file to perform the recordings
: select the Set up file for recording option, and using the triggered
dialog, choose a directory and file name (records will be made on json
files) ;

e once the file is correctly setted up, you will be able to start your
recording, select the Start recording option, this will start writing on
a file by taking a snapshot of the current psgraph ;

e from then every action modifying the psgraph (an edit action or an
evaluation step) will append the new model in the file ;

e you can pause the recording by selecting the Pause recording option,
no modification will then be recorded in the file ;

e at any moment the recording can be resumed, by selecting the Resume
recording option ;

e when the recording is being paused, you can set up a new file on which
to record.

The resulting json file can then be read by the web application.

6.2 Generating the web application

If you wish to host the web application on your own website, you can gen-
erate the needed HTML, CSS and JavaScript files from the desktop GUIL.
Select the Generate web app option in the Recording menu and choose a

20

Tinker : user guide 6. Web application

directory in which to copy the files. The default of the HTML is index.html,
make sure no file with the same name are in the same directory. If the files
were directly copied on a server, the web application should be accessible
through the following address :

yourDomainName [: thePortNumber] /path/to/the/webApp/

6.3 Using the web application

6.3.1 Hosting recordings

The generated web application should contain a directory named records.
This directory is meant to receive the recording files you previously cre-
ated. They can then be accessed through the web application by appending
?fileName to the URL.

For example you generated the web application and copied it in your
server, in a directory named tinker. Assuming your server is at the address
mydomain.com, to access the web application, you will need to enter the
following URL in a web browser :

myDomain.com/tinker/

Now you made a recording of your proof in a file named myRecordingl. json.
To make it accessible directly from the web application, copy the record-
ing file into the records directory in the web application. From now,
myRecordingl. json can be visualise via the web application by entering
the following URL :

myDomain.com/tinker?myRecordingl
You can also directly access a certain step in the proof recording by append-
ing the step number (starting with 0) as follow :

myDomain.com/tinker?myRecordingl#3

6.3.2 Loading local recording file

If you do not wish to host recordings, local files can be loaded from the main
page. This can also be done if cannot host the web application on a server, in
that case you can use our website : ggrov.github.io/tinker/tinkerViz. Press
the choose file button and select the file to load (see figure 6.1).

21

http://ggrov.github.io/tinker/tinkerViz

Tinker : user guide 6. Web application

No file specified

Choase file | No file chosen

Figure 6.1: File upload on the web application.

6.3.3 The interface

Figure 6.2 presents the web application interface. The main part is the graph
itself, that can be scaled and dragged. All of its nodes are also draggable
and the goal and moving the mouse over goal and tactic nodes will display
informations about them.

Directly on top of the graph, on the left-hand side, the evaluation path
(i.e. the path to the graph that was being evaluated or edited during record-
ing) is shown. On the right-hand side, a drop-down list allows you to access
all the graph tactics in the proof, and navigation buttons will enable you to
go through all the subgraphs.

22

Tinker : user guide 6. Web application

Tinker Viz

LoopConjl by Pierre Le Bras (07/08/15) EvaluationStep: <« 1/9 »

Evaluation path : demo demo-(root) v Subgraphs: « 1/1 »

ol [*HOL implies])

Credits : d3.js & d3-tip

Figure 6.2: The web application.

23

	Preamble
	Getting started
	Installation
	The interface

	PSGraph edition
	Drawing a graph
	Controls
	Nodes & tactics
	Edges
	PSGraphs library
	Using unicode characters

	Hierarchies

	PSGraph evaluation
	Evaluation setup
	GUI
	Prover

	Starting the evaluation
	Running the evaluation
	Evaluation options
	Evaluation log

	Editing while evaluating

	Saving and exporting psgraphs
	Web application
	Recordings
	Generating the web application
	Using the web application
	Hosting recordings
	Loading local recording file
	The interface

